In the following problems L_{n} represents a left endpoint approximation, R_{n} represents a right endpoint approximation, M_{n} represents a midpoint approximation, T_{n} represents a trapezoidal approximation, and S_{n} represents a Simpson's approximation where n is the number of subintervals.

1) Let $I=\int_{0}^{4} f(x) d x$, where f is the function whose graph is shown.
a) Use the graph to find L_{2}, R_{2}, and M_{2}.
$L_{2}=6, R_{2}=12, M_{2} \approx 9.6$
b) Are these underestimates or overestimates of I ?
c) Use the graph to find T_{2}. How does it compare with I ?
$L_{2}=$ under, $R_{2}=$ over, $M_{2}=$ over
$T_{2}=9$, under
d) For any value of n, list the numbers $L_{n}, R_{n}, M_{n}, T_{n}$, and I in increasing order. $L_{n}<T_{n}<I<M_{n}<R_{n}$

2) The left, right, Trapezoidal, and Midpoint Rule approximations were used to estimate $\int_{0}^{2} f(x) d x$, where f is the function whose graph is shown. The estimates were $0.7811,0.8675,0.8632$, and 0.9540 , and the same number of subintervals were used in each case.
a) Which rule produced which estimate? $\quad L_{n}=0.9540, T_{n}=0.8675, M_{n}=0.8632, R_{n}=0.7811$
b) Between which two approximations does the true value of $\int_{0}^{2} f(x) d x$ lie? $0.8632<\int_{0}^{2} f(x) d x<0.8675$

3) Estimate the area under the graph in the figure by using the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule, each with $n=4$.

4) Estimate $\int_{0}^{1} \cos \left(x^{2}\right) d x$ using the Trapezoidal Rule and the Midpoint Rule, each with $n=4$. From a graph of the integrand, decide whether your answers are underestimates or overestimates. Between which two approximations does the true value of $\int_{0}^{1} \cos \left(x^{2}\right) d x$ lie?

$$
\begin{aligned}
& T_{4} \approx 0.895759, M_{4} \approx 0.908907 \\
& T_{4}=\text { under }, M_{4}=\text { over } \\
& 0.895759<\int_{0}^{1} \cos \left(x^{2}\right) d x<0.908907
\end{aligned}
$$

Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.)
5) $\int_{0}^{1 / 2} \sin \left(x^{2}\right) d x, \quad n=4 \quad T_{4} \approx 0.042743, M_{4} \approx 0.040850, S_{4} \approx 0.041478$
6) $\int_{1}^{2} e^{1 / x} d x, n=4 \quad T_{4} \approx 2.031893, M_{4} \approx 2.014207, S_{4} \approx 2.020651$
7) $\int_{0}^{3} \frac{1}{1+y^{5}} d y, \quad n=6 \quad T_{6} \approx 1.064275, M_{6} \approx 1.067416, S_{6} \approx 1.074915$
8) For the integral $\int_{0}^{2} e^{-x^{2}} d x$ find the following:
a) Approximations T_{10} and $M_{10} \cdot T_{10} \approx 0.881839, M_{10} \approx 0.882202$
b) Estimate the errors in the approximations of part a). $\left|E_{T}\right| \leq 0.01 \overline{3},\left|E_{M}\right| \leq 0.00 \overline{6}$
c) How large do we have to choose n so that the approximations T_{n} and M_{n} to the integral in part a) are accurate to within 0.00001 ? $n=366$ for $T_{n}, n=259$ for M_{n}
9) Use the following data to answer the following:

x	$f(x)$
0.0	6.8
0.4	6.5
0.8	6.3
1.2	6.4
1.6	6.9
2.0	7.6
2.4	8.4
2.8	8.8
3.2	9.0

a) Use the Midpoint Rule to estimate the value of the integral $\int_{0}^{3.2} f(x) d x . \quad M_{4} \approx 23.44$
b) If it is known that $-4 \leq f^{\prime \prime}(x) \leq 1$ for all x, estimate the error involved in the approximation in part a). $\left|E_{M}\right| \leq 0.341 \overline{3}$

